// Copyright 2017, The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE.md file. // Package cmp determines equality of values. // // This package is intended to be a more powerful and safer alternative to // reflect.DeepEqual for comparing whether two values are semantically equal. // // The primary features of cmp are: // // • When the default behavior of equality does not suit the needs of the test, // custom equality functions can override the equality operation. // For example, an equality function may report floats as equal so long as they // are within some tolerance of each other. // // • Types that have an Equal method may use that method to determine equality. // This allows package authors to determine the equality operation for the types // that they define. // // • If no custom equality functions are used and no Equal method is defined, // equality is determined by recursively comparing the primitive kinds on both // values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported // fields are not compared by default; they result in panics unless suppressed // by using an Ignore option (see cmpopts.IgnoreUnexported) or explicitly compared // using the AllowUnexported option. package cmp import ( "fmt" "reflect" "github.com/google/go-cmp/cmp/internal/diff" "github.com/google/go-cmp/cmp/internal/function" "github.com/google/go-cmp/cmp/internal/value" ) // BUG(dsnet): Maps with keys containing NaN values cannot be properly compared due to // the reflection package's inability to retrieve such entries. Equal will panic // anytime it comes across a NaN key, but this behavior may change. // // See https://golang.org/issue/11104 for more details. var nothing = reflect.Value{} // Equal reports whether x and y are equal by recursively applying the // following rules in the given order to x and y and all of their sub-values: // // • If two values are not of the same type, then they are never equal // and the overall result is false. // // • Let S be the set of all Ignore, Transformer, and Comparer options that // remain after applying all path filters, value filters, and type filters. // If at least one Ignore exists in S, then the comparison is ignored. // If the number of Transformer and Comparer options in S is greater than one, // then Equal panics because it is ambiguous which option to use. // If S contains a single Transformer, then use that to transform the current // values and recursively call Equal on the output values. // If S contains a single Comparer, then use that to compare the current values. // Otherwise, evaluation proceeds to the next rule. // // • If the values have an Equal method of the form "(T) Equal(T) bool" or // "(T) Equal(I) bool" where T is assignable to I, then use the result of // x.Equal(y) even if x or y is nil. // Otherwise, no such method exists and evaluation proceeds to the next rule. // // • Lastly, try to compare x and y based on their basic kinds. // Simple kinds like booleans, integers, floats, complex numbers, strings, and // channels are compared using the equivalent of the == operator in Go. // Functions are only equal if they are both nil, otherwise they are unequal. // Pointers are equal if the underlying values they point to are also equal. // Interfaces are equal if their underlying concrete values are also equal. // // Structs are equal if all of their fields are equal. If a struct contains // unexported fields, Equal panics unless the AllowUnexported option is used or // an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field. // // Arrays, slices, and maps are equal if they are both nil or both non-nil // with the same length and the elements at each index or key are equal. // Note that a non-nil empty slice and a nil slice are not equal. // To equate empty slices and maps, consider using cmpopts.EquateEmpty. // Map keys are equal according to the == operator. // To use custom comparisons for map keys, consider using cmpopts.SortMaps. func Equal(x, y interface{}, opts ...Option) bool { s := newState(opts) s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y)) return s.result.Equal() } // Diff returns a human-readable report of the differences between two values. // It returns an empty string if and only if Equal returns true for the same // input values and options. The output string will use the "-" symbol to // indicate elements removed from x, and the "+" symbol to indicate elements // added to y. // // Do not depend on this output being stable. func Diff(x, y interface{}, opts ...Option) string { r := new(defaultReporter) opts = Options{Options(opts), r} eq := Equal(x, y, opts...) d := r.String() if (d == "") != eq { panic("inconsistent difference and equality results") } return d } type state struct { // These fields represent the "comparison state". // Calling statelessCompare must not result in observable changes to these. result diff.Result // The current result of comparison curPath Path // The current path in the value tree reporter reporter // Optional reporter used for difference formatting // dynChecker triggers pseudo-random checks for option correctness. // It is safe for statelessCompare to mutate this value. dynChecker dynChecker // These fields, once set by processOption, will not change. exporters map[reflect.Type]bool // Set of structs with unexported field visibility opts Options // List of all fundamental and filter options } func newState(opts []Option) *state { s := new(state) for _, opt := range opts { s.processOption(opt) } return s } func (s *state) processOption(opt Option) { switch opt := opt.(type) { case nil: case Options: for _, o := range opt { s.processOption(o) } case coreOption: type filtered interface { isFiltered() bool } if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() { panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt)) } s.opts = append(s.opts, opt) case visibleStructs: if s.exporters == nil { s.exporters = make(map[reflect.Type]bool) } for t := range opt { s.exporters[t] = true } case reporter: if s.reporter != nil { panic("difference reporter already registered") } s.reporter = opt default: panic(fmt.Sprintf("unknown option %T", opt)) } } // statelessCompare compares two values and returns the result. // This function is stateless in that it does not alter the current result, // or output to any registered reporters. func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result { // We do not save and restore the curPath because all of the compareX // methods should properly push and pop from the path. // It is an implementation bug if the contents of curPath differs from // when calling this function to when returning from it. oldResult, oldReporter := s.result, s.reporter s.result = diff.Result{} // Reset result s.reporter = nil // Remove reporter to avoid spurious printouts s.compareAny(vx, vy) res := s.result s.result, s.reporter = oldResult, oldReporter return res } func (s *state) compareAny(vx, vy reflect.Value) { // TODO: Support cyclic data structures. // Rule 0: Differing types are never equal. if !vx.IsValid() || !vy.IsValid() { s.report(vx.IsValid() == vy.IsValid(), vx, vy) return } if vx.Type() != vy.Type() { s.report(false, vx, vy) // Possible for path to be empty return } t := vx.Type() if len(s.curPath) == 0 { s.curPath.push(&pathStep{typ: t}) defer s.curPath.pop() } vx, vy = s.tryExporting(vx, vy) // Rule 1: Check whether an option applies on this node in the value tree. if s.tryOptions(vx, vy, t) { return } // Rule 2: Check whether the type has a valid Equal method. if s.tryMethod(vx, vy, t) { return } // Rule 3: Recursively descend into each value's underlying kind. switch t.Kind() { case reflect.Bool: s.report(vx.Bool() == vy.Bool(), vx, vy) return case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: s.report(vx.Int() == vy.Int(), vx, vy) return case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: s.report(vx.Uint() == vy.Uint(), vx, vy) return case reflect.Float32, reflect.Float64: s.report(vx.Float() == vy.Float(), vx, vy) return case reflect.Complex64, reflect.Complex128: s.report(vx.Complex() == vy.Complex(), vx, vy) return case reflect.String: s.report(vx.String() == vy.String(), vx, vy) return case reflect.Chan, reflect.UnsafePointer: s.report(vx.Pointer() == vy.Pointer(), vx, vy) return case reflect.Func: s.report(vx.IsNil() && vy.IsNil(), vx, vy) return case reflect.Ptr: if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), vx, vy) return } s.curPath.push(&indirect{pathStep{t.Elem()}}) defer s.curPath.pop() s.compareAny(vx.Elem(), vy.Elem()) return case reflect.Interface: if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), vx, vy) return } if vx.Elem().Type() != vy.Elem().Type() { s.report(false, vx.Elem(), vy.Elem()) return } s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}}) defer s.curPath.pop() s.compareAny(vx.Elem(), vy.Elem()) return case reflect.Slice: if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), vx, vy) return } fallthrough case reflect.Array: s.compareArray(vx, vy, t) return case reflect.Map: s.compareMap(vx, vy, t) return case reflect.Struct: s.compareStruct(vx, vy, t) return default: panic(fmt.Sprintf("%v kind not handled", t.Kind())) } } func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) { if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported { if sf.force { // Use unsafe pointer arithmetic to get read-write access to an // unexported field in the struct. vx = unsafeRetrieveField(sf.pvx, sf.field) vy = unsafeRetrieveField(sf.pvy, sf.field) } else { // We are not allowed to export the value, so invalidate them // so that tryOptions can panic later if not explicitly ignored. vx = nothing vy = nothing } } return vx, vy } func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool { // If there were no FilterValues, we will not detect invalid inputs, // so manually check for them and append invalid if necessary. // We still evaluate the options since an ignore can override invalid. opts := s.opts if !vx.IsValid() || !vy.IsValid() { opts = Options{opts, invalid{}} } // Evaluate all filters and apply the remaining options. if opt := opts.filter(s, vx, vy, t); opt != nil { opt.apply(s, vx, vy) return true } return false } func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool { // Check if this type even has an Equal method. m, ok := t.MethodByName("Equal") if !ok || !function.IsType(m.Type, function.EqualAssignable) { return false } eq := s.callTTBFunc(m.Func, vx, vy) s.report(eq, vx, vy) return true } func (s *state) callTRFunc(f, v reflect.Value) reflect.Value { v = sanitizeValue(v, f.Type().In(0)) if !s.dynChecker.Next() { return f.Call([]reflect.Value{v})[0] } // Run the function twice and ensure that we get the same results back. // We run in goroutines so that the race detector (if enabled) can detect // unsafe mutations to the input. c := make(chan reflect.Value) go detectRaces(c, f, v) want := f.Call([]reflect.Value{v})[0] if got := <-c; !s.statelessCompare(got, want).Equal() { // To avoid false-positives with non-reflexive equality operations, // we sanity check whether a value is equal to itself. if !s.statelessCompare(want, want).Equal() { return want } fn := getFuncName(f.Pointer()) panic(fmt.Sprintf("non-deterministic function detected: %s", fn)) } return want } func (s *state) callTTBFunc(f, x, y reflect.Value) bool { x = sanitizeValue(x, f.Type().In(0)) y = sanitizeValue(y, f.Type().In(1)) if !s.dynChecker.Next() { return f.Call([]reflect.Value{x, y})[0].Bool() } // Swapping the input arguments is sufficient to check that // f is symmetric and deterministic. // We run in goroutines so that the race detector (if enabled) can detect // unsafe mutations to the input. c := make(chan reflect.Value) go detectRaces(c, f, y, x) want := f.Call([]reflect.Value{x, y})[0].Bool() if got := <-c; !got.IsValid() || got.Bool() != want { fn := getFuncName(f.Pointer()) panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn)) } return want } func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) { var ret reflect.Value defer func() { recover() // Ignore panics, let the other call to f panic instead c <- ret }() ret = f.Call(vs)[0] } // sanitizeValue converts nil interfaces of type T to those of type R, // assuming that T is assignable to R. // Otherwise, it returns the input value as is. func sanitizeValue(v reflect.Value, t reflect.Type) reflect.Value { // TODO(dsnet): Remove this hacky workaround. // See https://golang.org/issue/22143 if v.Kind() == reflect.Interface && v.IsNil() && v.Type() != t { return reflect.New(t).Elem() } return v } func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) { step := &sliceIndex{pathStep{t.Elem()}, 0, 0} s.curPath.push(step) // Compute an edit-script for slices vx and vy. es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result { step.xkey, step.ykey = ix, iy return s.statelessCompare(vx.Index(ix), vy.Index(iy)) }) // Report the entire slice as is if the arrays are of primitive kind, // and the arrays are different enough. isPrimitive := false switch t.Elem().Kind() { case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr, reflect.Bool, reflect.Float32, reflect.Float64, reflect.Complex64, reflect.Complex128: isPrimitive = true } if isPrimitive && es.Dist() > (vx.Len()+vy.Len())/4 { s.curPath.pop() // Pop first since we are reporting the whole slice s.report(false, vx, vy) return } // Replay the edit-script. var ix, iy int for _, e := range es { switch e { case diff.UniqueX: step.xkey, step.ykey = ix, -1 s.report(false, vx.Index(ix), nothing) ix++ case diff.UniqueY: step.xkey, step.ykey = -1, iy s.report(false, nothing, vy.Index(iy)) iy++ default: step.xkey, step.ykey = ix, iy if e == diff.Identity { s.report(true, vx.Index(ix), vy.Index(iy)) } else { s.compareAny(vx.Index(ix), vy.Index(iy)) } ix++ iy++ } } s.curPath.pop() return } func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) { if vx.IsNil() || vy.IsNil() { s.report(vx.IsNil() && vy.IsNil(), vx, vy) return } // We combine and sort the two map keys so that we can perform the // comparisons in a deterministic order. step := &mapIndex{pathStep: pathStep{t.Elem()}} s.curPath.push(step) defer s.curPath.pop() for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) { step.key = k vvx := vx.MapIndex(k) vvy := vy.MapIndex(k) switch { case vvx.IsValid() && vvy.IsValid(): s.compareAny(vvx, vvy) case vvx.IsValid() && !vvy.IsValid(): s.report(false, vvx, nothing) case !vvx.IsValid() && vvy.IsValid(): s.report(false, nothing, vvy) default: // It is possible for both vvx and vvy to be invalid if the // key contained a NaN value in it. There is no way in // reflection to be able to retrieve these values. // See https://golang.org/issue/11104 panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath)) } } } func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) { var vax, vay reflect.Value // Addressable versions of vx and vy step := &structField{} s.curPath.push(step) defer s.curPath.pop() for i := 0; i < t.NumField(); i++ { vvx := vx.Field(i) vvy := vy.Field(i) step.typ = t.Field(i).Type step.name = t.Field(i).Name step.idx = i step.unexported = !isExported(step.name) if step.unexported { // Defer checking of unexported fields until later to give an // Ignore a chance to ignore the field. if !vax.IsValid() || !vay.IsValid() { // For unsafeRetrieveField to work, the parent struct must // be addressable. Create a new copy of the values if // necessary to make them addressable. vax = makeAddressable(vx) vay = makeAddressable(vy) } step.force = s.exporters[t] step.pvx = vax step.pvy = vay step.field = t.Field(i) } s.compareAny(vvx, vvy) } } // report records the result of a single comparison. // It also calls Report if any reporter is registered. func (s *state) report(eq bool, vx, vy reflect.Value) { if eq { s.result.NSame++ } else { s.result.NDiff++ } if s.reporter != nil { s.reporter.Report(vx, vy, eq, s.curPath) } } // dynChecker tracks the state needed to periodically perform checks that // user provided functions are symmetric and deterministic. // The zero value is safe for immediate use. type dynChecker struct{ curr, next int } // Next increments the state and reports whether a check should be performed. // // Checks occur every Nth function call, where N is a triangular number: // 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ... // See https://en.wikipedia.org/wiki/Triangular_number // // This sequence ensures that the cost of checks drops significantly as // the number of functions calls grows larger. func (dc *dynChecker) Next() bool { ok := dc.curr == dc.next if ok { dc.curr = 0 dc.next++ } dc.curr++ return ok } // makeAddressable returns a value that is always addressable. // It returns the input verbatim if it is already addressable, // otherwise it creates a new value and returns an addressable copy. func makeAddressable(v reflect.Value) reflect.Value { if v.CanAddr() { return v } vc := reflect.New(v.Type()).Elem() vc.Set(v) return vc }