meditime/vendor/github.com/dgraph-io/badger/stream.go

387 lines
11 KiB
Go

/*
* Copyright 2018 Dgraph Labs, Inc. and Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package badger
import (
"bytes"
"context"
"math"
"sync"
"sync/atomic"
"time"
"github.com/dgraph-io/badger/pb"
"github.com/dgraph-io/badger/y"
humanize "github.com/dustin/go-humanize"
"github.com/golang/protobuf/proto"
)
const pageSize = 4 << 20 // 4MB
// Stream provides a framework to concurrently iterate over a snapshot of Badger, pick up
// key-values, batch them up and call Send. Stream does concurrent iteration over many smaller key
// ranges. It does NOT send keys in lexicographical sorted order. To get keys in sorted
// order, use Iterator.
type Stream struct {
// Prefix to only iterate over certain range of keys. If set to nil (default), Stream would
// iterate over the entire DB.
Prefix []byte
// Number of goroutines to use for iterating over key ranges. Defaults to 16.
NumGo int
// Badger would produce log entries in Infof to indicate the progress of Stream. LogPrefix can
// be used to help differentiate them from other activities. Default is "Badger.Stream".
LogPrefix string
// ChooseKey is invoked each time a new key is encountered. Note that this is not called
// on every version of the value, only the first encountered version (i.e. the highest version
// of the value a key has). ChooseKey can be left nil to select all keys.
//
// Note: Calls to ChooseKey are concurrent.
ChooseKey func(item *Item) bool
// KeyToList, similar to ChooseKey, is only invoked on the highest version of the value. It
// is upto the caller to iterate over the versions and generate zero, one or more KVs. It
// is expected that the user would advance the iterator to go through the versions of the
// values. However, the user MUST immediately return from this function on the first encounter
// with a mismatching key. See example usage in ToList function. Can be left nil to use ToList
// function by default.
//
// Note: Calls to KeyToList are concurrent.
KeyToList func(key []byte, itr *Iterator) (*pb.KVList, error)
// This is the method where Stream sends the final output. All calls to Send are done by a
// single goroutine, i.e. logic within Send method can expect single threaded execution.
Send func(*pb.KVList) error
readTs uint64
db *DB
rangeCh chan keyRange
kvChan chan *pb.KVList
nextStreamId uint32
}
// ToList is a default implementation of KeyToList. It picks up all valid versions of the key,
// skipping over deleted or expired keys.
func (st *Stream) ToList(key []byte, itr *Iterator) (*pb.KVList, error) {
list := &pb.KVList{}
for ; itr.Valid(); itr.Next() {
item := itr.Item()
if item.IsDeletedOrExpired() {
break
}
if !bytes.Equal(key, item.Key()) {
// Break out on the first encounter with another key.
break
}
valCopy, err := item.ValueCopy(nil)
if err != nil {
return nil, err
}
kv := &pb.KV{
Key: item.KeyCopy(nil),
Value: valCopy,
UserMeta: []byte{item.UserMeta()},
Version: item.Version(),
ExpiresAt: item.ExpiresAt(),
}
list.Kv = append(list.Kv, kv)
if st.db.opt.NumVersionsToKeep == 1 {
break
}
if item.DiscardEarlierVersions() {
break
}
}
return list, nil
}
// keyRange is [start, end), including start, excluding end. Do ensure that the start,
// end byte slices are owned by keyRange struct.
func (st *Stream) produceRanges(ctx context.Context) {
splits := st.db.KeySplits(st.Prefix)
// We don't need to create more key ranges than NumGo goroutines. This way, we will have limited
// number of "streams" coming out, which then helps limit the memory used by SSWriter.
{
pickEvery := int(math.Floor(float64(len(splits)) / float64(st.NumGo)))
if pickEvery < 1 {
pickEvery = 1
}
filtered := splits[:0]
for i, split := range splits {
if (i+1)%pickEvery == 0 {
filtered = append(filtered, split)
}
}
splits = filtered
}
start := y.SafeCopy(nil, st.Prefix)
for _, key := range splits {
st.rangeCh <- keyRange{left: start, right: y.SafeCopy(nil, []byte(key))}
start = y.SafeCopy(nil, []byte(key))
}
// Edge case: prefix is empty and no splits exist. In that case, we should have at least one
// keyRange output.
st.rangeCh <- keyRange{left: start}
close(st.rangeCh)
}
// produceKVs picks up ranges from rangeCh, generates KV lists and sends them to kvChan.
func (st *Stream) produceKVs(ctx context.Context) error {
var size int
var txn *Txn
if st.readTs > 0 {
txn = st.db.NewTransactionAt(st.readTs, false)
} else {
txn = st.db.NewTransaction(false)
}
defer txn.Discard()
iterate := func(kr keyRange) error {
iterOpts := DefaultIteratorOptions
iterOpts.AllVersions = true
iterOpts.Prefix = st.Prefix
iterOpts.PrefetchValues = false
itr := txn.NewIterator(iterOpts)
defer itr.Close()
// This unique stream id is used to identify all the keys from this iteration.
streamId := atomic.AddUint32(&st.nextStreamId, 1)
outList := new(pb.KVList)
var prevKey []byte
for itr.Seek(kr.left); itr.Valid(); {
// it.Valid would only return true for keys with the provided Prefix in iterOpts.
item := itr.Item()
if bytes.Equal(item.Key(), prevKey) {
itr.Next()
continue
}
prevKey = append(prevKey[:0], item.Key()...)
// Check if we reached the end of the key range.
if len(kr.right) > 0 && bytes.Compare(item.Key(), kr.right) >= 0 {
break
}
// Check if we should pick this key.
if st.ChooseKey != nil && !st.ChooseKey(item) {
continue
}
// Now convert to key value.
list, err := st.KeyToList(item.KeyCopy(nil), itr)
if err != nil {
return err
}
if list == nil || len(list.Kv) == 0 {
continue
}
outList.Kv = append(outList.Kv, list.Kv...)
size += proto.Size(list)
if size >= pageSize {
for _, kv := range outList.Kv {
kv.StreamId = streamId
}
select {
case st.kvChan <- outList:
case <-ctx.Done():
return ctx.Err()
}
outList = new(pb.KVList)
size = 0
}
}
if len(outList.Kv) > 0 {
for _, kv := range outList.Kv {
kv.StreamId = streamId
}
// TODO: Think of a way to indicate that a stream is over.
select {
case st.kvChan <- outList:
case <-ctx.Done():
return ctx.Err()
}
}
return nil
}
for {
select {
case kr, ok := <-st.rangeCh:
if !ok {
// Done with the keys.
return nil
}
if err := iterate(kr); err != nil {
return err
}
case <-ctx.Done():
return ctx.Err()
}
}
}
func (st *Stream) streamKVs(ctx context.Context) error {
var count int
var bytesSent uint64
t := time.NewTicker(time.Second)
defer t.Stop()
now := time.Now()
slurp := func(batch *pb.KVList) error {
loop:
for {
select {
case kvs, ok := <-st.kvChan:
if !ok {
break loop
}
y.AssertTrue(kvs != nil)
batch.Kv = append(batch.Kv, kvs.Kv...)
default:
break loop
}
}
sz := uint64(proto.Size(batch))
bytesSent += sz
count += len(batch.Kv)
t := time.Now()
if err := st.Send(batch); err != nil {
return err
}
st.db.opt.Infof("%s Created batch of size: %s in %s.\n",
st.LogPrefix, humanize.Bytes(sz), time.Since(t))
return nil
}
outer:
for {
var batch *pb.KVList
select {
case <-ctx.Done():
return ctx.Err()
case <-t.C:
dur := time.Since(now)
durSec := uint64(dur.Seconds())
if durSec == 0 {
continue
}
speed := bytesSent / durSec
st.db.opt.Infof("%s Time elapsed: %s, bytes sent: %s, speed: %s/sec\n", st.LogPrefix,
y.FixedDuration(dur), humanize.Bytes(bytesSent), humanize.Bytes(speed))
case kvs, ok := <-st.kvChan:
if !ok {
break outer
}
y.AssertTrue(kvs != nil)
batch = kvs
if err := slurp(batch); err != nil {
return err
}
}
}
st.db.opt.Infof("%s Sent %d keys\n", st.LogPrefix, count)
return nil
}
// Orchestrate runs Stream. It picks up ranges from the SSTables, then runs NumGo number of
// goroutines to iterate over these ranges and batch up KVs in lists. It concurrently runs a single
// goroutine to pick these lists, batch them up further and send to Output.Send. Orchestrate also
// spits logs out to Infof, using provided LogPrefix. Note that all calls to Output.Send
// are serial. In case any of these steps encounter an error, Orchestrate would stop execution and
// return that error. Orchestrate can be called multiple times, but in serial order.
func (st *Stream) Orchestrate(ctx context.Context) error {
st.rangeCh = make(chan keyRange, 3) // Contains keys for posting lists.
// kvChan should only have a small capacity to ensure that we don't buffer up too much data if
// sending is slow. Page size is set to 4MB, which is used to lazily cap the size of each
// KVList. To get 128MB buffer, we can set the channel size to 32.
st.kvChan = make(chan *pb.KVList, 32)
if st.KeyToList == nil {
st.KeyToList = st.ToList
}
// Picks up ranges from Badger, and sends them to rangeCh.
go st.produceRanges(ctx)
errCh := make(chan error, 1) // Stores error by consumeKeys.
var wg sync.WaitGroup
for i := 0; i < st.NumGo; i++ {
wg.Add(1)
go func() {
defer wg.Done()
// Picks up ranges from rangeCh, generates KV lists, and sends them to kvChan.
if err := st.produceKVs(ctx); err != nil {
select {
case errCh <- err:
default:
}
}
}()
}
// Pick up key-values from kvChan and send to stream.
kvErr := make(chan error, 1)
go func() {
// Picks up KV lists from kvChan, and sends them to Output.
kvErr <- st.streamKVs(ctx)
}()
wg.Wait() // Wait for produceKVs to be over.
close(st.kvChan) // Now we can close kvChan.
select {
case err := <-errCh: // Check error from produceKVs.
return err
default:
}
// Wait for key streaming to be over.
err := <-kvErr
return err
}
func (db *DB) newStream() *Stream {
return &Stream{db: db, NumGo: 16, LogPrefix: "Badger.Stream"}
}
// NewStream creates a new Stream.
func (db *DB) NewStream() *Stream {
if db.opt.managedTxns {
panic("This API can not be called in managed mode.")
}
return db.newStream()
}
// NewStreamAt creates a new Stream at a particular timestamp. Should only be used with managed DB.
func (db *DB) NewStreamAt(readTs uint64) *Stream {
if !db.opt.managedTxns {
panic("This API can only be called in managed mode.")
}
stream := db.newStream()
stream.readTs = readTs
return stream
}