585 lines
14 KiB
Go
585 lines
14 KiB
Go
/*
|
|
* Copyright 2020 Dgraph Labs, Inc. and Contributors
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
package z
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"os"
|
|
"reflect"
|
|
"strings"
|
|
"unsafe"
|
|
|
|
"github.com/dgraph-io/ristretto/z/simd"
|
|
)
|
|
|
|
var (
|
|
pageSize = os.Getpagesize()
|
|
maxKeys = (pageSize / 16) - 1
|
|
oneThird = int(float64(maxKeys) / 3)
|
|
absoluteMax = uint64(math.MaxUint64 - 1)
|
|
minSize = 1 << 20
|
|
)
|
|
|
|
// Tree represents the structure for custom mmaped B+ tree.
|
|
// It supports keys in range [1, math.MaxUint64-1] and values [1, math.Uint64].
|
|
type Tree struct {
|
|
data []byte
|
|
nextPage uint64
|
|
freePage uint64
|
|
stats TreeStats
|
|
}
|
|
|
|
func (t *Tree) initRootNode() {
|
|
// This is the root node.
|
|
t.newNode(0)
|
|
// This acts as the rightmost pointer (all the keys are <= this key).
|
|
t.Set(absoluteMax, 0)
|
|
}
|
|
|
|
// NewTree returns a memory mapped B+ tree with given filename.
|
|
func NewTree() *Tree {
|
|
t := &Tree{}
|
|
t.Reset()
|
|
return t
|
|
}
|
|
|
|
// Reset resets the tree and truncates it to maxSz.
|
|
func (t *Tree) Reset() {
|
|
t.nextPage = 1
|
|
t.freePage = 0
|
|
t.data = make([]byte, minSize)
|
|
t.stats = TreeStats{}
|
|
t.initRootNode()
|
|
}
|
|
|
|
type TreeStats struct {
|
|
Allocated int // Derived.
|
|
Bytes int // Derived.
|
|
NumLeafKeys int // Calculated.
|
|
NumPages int // Derived.
|
|
NumPagesFree int // Calculated.
|
|
Occupancy float64 // Derived.
|
|
PageSize int // Derived.
|
|
}
|
|
|
|
// Stats returns stats about the tree.
|
|
func (t *Tree) Stats() TreeStats {
|
|
numPages := int(t.nextPage - 1)
|
|
out := TreeStats{
|
|
Bytes: numPages * pageSize,
|
|
Allocated: cap(t.data),
|
|
NumLeafKeys: t.stats.NumLeafKeys,
|
|
NumPages: numPages,
|
|
NumPagesFree: t.stats.NumPagesFree,
|
|
PageSize: pageSize,
|
|
}
|
|
out.Occupancy = 100.0 * float64(out.NumLeafKeys) / float64(maxKeys*numPages)
|
|
return out
|
|
}
|
|
|
|
// BytesToU32Slice converts the given byte slice to uint32 slice
|
|
func BytesToUint64Slice(b []byte) []uint64 {
|
|
if len(b) == 0 {
|
|
return nil
|
|
}
|
|
var u64s []uint64
|
|
hdr := (*reflect.SliceHeader)(unsafe.Pointer(&u64s))
|
|
hdr.Len = len(b) / 8
|
|
hdr.Cap = hdr.Len
|
|
hdr.Data = uintptr(unsafe.Pointer(&b[0]))
|
|
return u64s
|
|
}
|
|
|
|
func (t *Tree) newNode(bit uint64) node {
|
|
var pageId uint64
|
|
if t.freePage > 0 {
|
|
pageId = t.freePage
|
|
t.stats.NumPagesFree--
|
|
} else {
|
|
pageId = t.nextPage
|
|
t.nextPage++
|
|
offset := int(pageId) * pageSize
|
|
// Double the size with an upper cap of 1GB, if current buffer is insufficient.
|
|
if offset+pageSize > len(t.data) {
|
|
const oneGB = 1 << 30
|
|
newSz := 2 * len(t.data)
|
|
if newSz > len(t.data)+oneGB {
|
|
newSz = len(t.data) + oneGB
|
|
}
|
|
out := make([]byte, newSz)
|
|
copy(out, t.data)
|
|
t.data = out
|
|
}
|
|
}
|
|
n := t.node(pageId)
|
|
if t.freePage > 0 {
|
|
t.freePage = n.uint64(0)
|
|
}
|
|
zeroOut(n)
|
|
n.setBit(bit)
|
|
n.setAt(keyOffset(maxKeys), pageId)
|
|
return n
|
|
}
|
|
|
|
func getNode(data []byte) node {
|
|
return node(BytesToUint64Slice(data))
|
|
}
|
|
|
|
func zeroOut(data []uint64) {
|
|
for i := 0; i < len(data); i++ {
|
|
data[i] = 0
|
|
}
|
|
}
|
|
|
|
func (t *Tree) node(pid uint64) node {
|
|
// page does not exist
|
|
if pid == 0 {
|
|
return nil
|
|
}
|
|
start := pageSize * int(pid)
|
|
return getNode(t.data[start : start+pageSize])
|
|
}
|
|
|
|
// Set sets the key-value pair in the tree.
|
|
func (t *Tree) Set(k, v uint64) {
|
|
if k == math.MaxUint64 || k == 0 {
|
|
panic("Error setting zero or MaxUint64")
|
|
}
|
|
root := t.set(1, k, v)
|
|
if root.isFull() {
|
|
right := t.split(1)
|
|
left := t.newNode(root.bits())
|
|
// Re-read the root as the underlying buffer for tree might have changed during split.
|
|
root = t.node(1)
|
|
copy(left[:keyOffset(maxKeys)], root)
|
|
left.setNumKeys(root.numKeys())
|
|
|
|
// reset the root node.
|
|
zeroOut(root[:keyOffset(maxKeys)])
|
|
root.setNumKeys(0)
|
|
|
|
// set the pointers for left and right child in the root node.
|
|
root.set(left.maxKey(), left.pageID())
|
|
root.set(right.maxKey(), right.pageID())
|
|
}
|
|
}
|
|
|
|
// For internal nodes, they contain <key, ptr>.
|
|
// where all entries <= key are stored in the corresponding ptr.
|
|
func (t *Tree) set(pid, k, v uint64) node {
|
|
n := t.node(pid)
|
|
if n.isLeaf() {
|
|
t.stats.NumLeafKeys += n.set(k, v)
|
|
return n
|
|
}
|
|
|
|
// This is an internal node.
|
|
idx := n.search(k)
|
|
if idx >= maxKeys {
|
|
panic("search returned index >= maxKeys")
|
|
}
|
|
// If no key at idx.
|
|
if n.key(idx) == 0 {
|
|
n.setAt(keyOffset(idx), k)
|
|
n.setNumKeys(n.numKeys() + 1)
|
|
}
|
|
child := t.node(n.val(idx))
|
|
if child == nil {
|
|
child = t.newNode(bitLeaf)
|
|
n = t.node(pid)
|
|
n.setAt(valOffset(idx), child.pageID())
|
|
}
|
|
child = t.set(child.pageID(), k, v)
|
|
// Re-read n as the underlying buffer for tree might have changed during set.
|
|
n = t.node(pid)
|
|
if child.isFull() {
|
|
// Just consider the left sibling for simplicity.
|
|
// if t.shareWithSibling(n, idx) {
|
|
// return n
|
|
// }
|
|
|
|
nn := t.split(child.pageID())
|
|
// Re-read n and child as the underlying buffer for tree might have changed during split.
|
|
n = t.node(pid)
|
|
child = t.node(n.uint64(valOffset(idx)))
|
|
// Set child pointers in the node n.
|
|
// Note that key for right node (nn) already exist in node n, but the
|
|
// pointer is updated.
|
|
n.set(child.maxKey(), child.pageID())
|
|
n.set(nn.maxKey(), nn.pageID())
|
|
}
|
|
return n
|
|
}
|
|
|
|
// Get looks for key and returns the corresponding value.
|
|
// If key is not found, 0 is returned.
|
|
func (t *Tree) Get(k uint64) uint64 {
|
|
if k == math.MaxUint64 || k == 0 {
|
|
panic("Does not support getting MaxUint64/Zero")
|
|
}
|
|
root := t.node(1)
|
|
return t.get(root, k)
|
|
}
|
|
|
|
func (t *Tree) get(n node, k uint64) uint64 {
|
|
if n.isLeaf() {
|
|
return n.get(k)
|
|
}
|
|
// This is internal node
|
|
idx := n.search(k)
|
|
if idx == n.numKeys() || n.key(idx) == 0 {
|
|
return 0
|
|
}
|
|
child := t.node(n.uint64(valOffset(idx)))
|
|
assert(child != nil)
|
|
return t.get(child, k)
|
|
}
|
|
|
|
// DeleteBelow deletes all keys with value under ts.
|
|
func (t *Tree) DeleteBelow(ts uint64) {
|
|
root := t.node(1)
|
|
t.stats.NumLeafKeys = 0
|
|
t.compact(root, ts)
|
|
assert(root.numKeys() >= 1)
|
|
}
|
|
|
|
func (t *Tree) compact(n node, ts uint64) int {
|
|
if n.isLeaf() {
|
|
numKeys := n.compact(ts)
|
|
t.stats.NumLeafKeys += numKeys
|
|
return numKeys
|
|
}
|
|
// Not leaf.
|
|
N := n.numKeys()
|
|
for i := 0; i < N; i++ {
|
|
assert(n.key(i) > 0)
|
|
childID := n.uint64(valOffset(i))
|
|
child := t.node(childID)
|
|
if rem := t.compact(child, ts); rem == 0 && i < N-1 {
|
|
// If no valid key is remaining we can drop this child. However, don't do that if this
|
|
// is the max key.
|
|
child.setAt(0, t.freePage)
|
|
t.freePage = childID
|
|
n.setAt(valOffset(i), 0)
|
|
t.stats.NumPagesFree++
|
|
}
|
|
}
|
|
// We use ts=1 here because we want to delete all the keys whose value is 0, which means they no
|
|
// longer have a valid page for that key.
|
|
return n.compact(1)
|
|
}
|
|
|
|
func (t *Tree) iterate(n node, fn func(node)) {
|
|
fn(n)
|
|
if n.isLeaf() {
|
|
return
|
|
}
|
|
// Explore children.
|
|
for i := 0; i < maxKeys; i++ {
|
|
if n.key(i) == 0 {
|
|
return
|
|
}
|
|
childID := n.uint64(valOffset(i))
|
|
assert(childID > 0)
|
|
|
|
child := t.node(childID)
|
|
t.iterate(child, fn)
|
|
}
|
|
}
|
|
|
|
// Iterate iterates over the tree and executes the fn on each node.
|
|
func (t *Tree) Iterate(fn func(node)) {
|
|
root := t.node(1)
|
|
t.iterate(root, fn)
|
|
}
|
|
|
|
func (t *Tree) print(n node, parentID uint64) {
|
|
n.print(parentID)
|
|
if n.isLeaf() {
|
|
return
|
|
}
|
|
pid := n.pageID()
|
|
for i := 0; i < maxKeys; i++ {
|
|
if n.key(i) == 0 {
|
|
return
|
|
}
|
|
childID := n.uint64(valOffset(i))
|
|
child := t.node(childID)
|
|
t.print(child, pid)
|
|
}
|
|
}
|
|
|
|
// Print iterates over the tree and prints all valid KVs.
|
|
func (t *Tree) Print() {
|
|
root := t.node(1)
|
|
t.print(root, 0)
|
|
}
|
|
|
|
// Splits the node into two. It moves right half of the keys from the original node to a newly
|
|
// created right node. It returns the right node.
|
|
func (t *Tree) split(pid uint64) node {
|
|
n := t.node(pid)
|
|
if !n.isFull() {
|
|
panic("This should be called only when n is full")
|
|
}
|
|
|
|
// Create a new node nn, copy over half the keys from n, and set the parent to n's parent.
|
|
nn := t.newNode(n.bits())
|
|
// Re-read n as the underlying buffer for tree might have changed during newNode.
|
|
n = t.node(pid)
|
|
rightHalf := n[keyOffset(maxKeys/2):keyOffset(maxKeys)]
|
|
copy(nn, rightHalf)
|
|
nn.setNumKeys(maxKeys - maxKeys/2)
|
|
|
|
// Remove entries from node n.
|
|
zeroOut(rightHalf)
|
|
n.setNumKeys(maxKeys / 2)
|
|
return nn
|
|
}
|
|
|
|
// shareWithSiblingXXX is unused for now. The idea is to move some keys to
|
|
// sibling when a node is full. But, I don't see any special benefits in our
|
|
// access pattern. It doesn't result in better occupancy ratios.
|
|
func (t *Tree) shareWithSiblingXXX(n node, idx int) bool {
|
|
if idx == 0 {
|
|
return false
|
|
}
|
|
left := t.node(n.val(idx - 1))
|
|
ns := left.numKeys()
|
|
if ns >= maxKeys/2 {
|
|
// Sibling is already getting full.
|
|
return false
|
|
}
|
|
|
|
right := t.node(n.val(idx))
|
|
// Copy over keys from right child to left child.
|
|
copied := copy(left[keyOffset(ns):], right[:keyOffset(oneThird)])
|
|
copied /= 2 // Considering that key-val constitute one key.
|
|
left.setNumKeys(ns + copied)
|
|
|
|
// Update the max key in parent node n for the left sibling.
|
|
n.setAt(keyOffset(idx-1), left.maxKey())
|
|
|
|
// Now move keys to left for the right sibling.
|
|
until := copy(right, right[keyOffset(oneThird):keyOffset(maxKeys)])
|
|
right.setNumKeys(until / 2)
|
|
zeroOut(right[until:keyOffset(maxKeys)])
|
|
return true
|
|
}
|
|
|
|
// Each node in the node is of size pageSize. Two kinds of nodes. Leaf nodes and internal nodes.
|
|
// Leaf nodes only contain the data. Internal nodes would contain the key and the offset to the
|
|
// child node.
|
|
// Internal node would have first entry as
|
|
// <0 offset to child>, <1000 offset>, <5000 offset>, and so on...
|
|
// Leaf nodes would just have: <key, value>, <key, value>, and so on...
|
|
// Last 16 bytes of the node are off limits.
|
|
// | pageID (8 bytes) | metaBits (1 byte) | 3 free bytes | numKeys (4 bytes) |
|
|
type node []uint64
|
|
|
|
func (n node) uint64(start int) uint64 { return n[start] }
|
|
|
|
// func (n node) uint32(start int) uint32 { return *(*uint32)(unsafe.Pointer(&n[start])) }
|
|
|
|
func keyOffset(i int) int { return 2 * i }
|
|
func valOffset(i int) int { return 2*i + 1 }
|
|
func (n node) numKeys() int { return int(n.uint64(valOffset(maxKeys)) & 0xFFFFFFFF) }
|
|
func (n node) pageID() uint64 { return n.uint64(keyOffset(maxKeys)) }
|
|
func (n node) key(i int) uint64 { return n.uint64(keyOffset(i)) }
|
|
func (n node) val(i int) uint64 { return n.uint64(valOffset(i)) }
|
|
func (n node) data(i int) []uint64 { return n[keyOffset(i):keyOffset(i+1)] }
|
|
|
|
func (n node) setAt(start int, k uint64) {
|
|
n[start] = k
|
|
}
|
|
|
|
func (n node) setNumKeys(num int) {
|
|
idx := valOffset(maxKeys)
|
|
val := n[idx]
|
|
val &= 0xFFFFFFFF00000000
|
|
val |= uint64(num)
|
|
n[idx] = val
|
|
}
|
|
|
|
func (n node) moveRight(lo int) {
|
|
hi := n.numKeys()
|
|
assert(hi != maxKeys)
|
|
// copy works despite of overlap in src and dst.
|
|
// See https://golang.org/pkg/builtin/#copy
|
|
copy(n[keyOffset(lo+1):keyOffset(hi+1)], n[keyOffset(lo):keyOffset(hi)])
|
|
}
|
|
|
|
const (
|
|
bitLeaf = uint64(1 << 63)
|
|
)
|
|
|
|
func (n node) setBit(b uint64) {
|
|
vo := valOffset(maxKeys)
|
|
val := n[vo]
|
|
val &= 0xFFFFFFFF
|
|
val |= b
|
|
n[vo] = val
|
|
}
|
|
func (n node) bits() uint64 {
|
|
return n.val(maxKeys) & 0xFF00000000000000
|
|
}
|
|
func (n node) isLeaf() bool {
|
|
return n.bits()&bitLeaf > 0
|
|
}
|
|
|
|
// isFull checks that the node is already full.
|
|
func (n node) isFull() bool {
|
|
return n.numKeys() == maxKeys
|
|
}
|
|
|
|
// Search returns the index of a smallest key >= k in a node.
|
|
func (n node) search(k uint64) int {
|
|
N := n.numKeys()
|
|
if N < 4 {
|
|
for i := 0; i < N; i++ {
|
|
if ki := n.key(i); ki >= k {
|
|
return i
|
|
}
|
|
}
|
|
return N
|
|
}
|
|
return int(simd.Search(n[:2*N], k))
|
|
// lo, hi := 0, N
|
|
// // Reduce the search space using binary seach and then do linear search.
|
|
// for hi-lo > 32 {
|
|
// mid := (hi + lo) / 2
|
|
// km := n.key(mid)
|
|
// if k == km {
|
|
// return mid
|
|
// }
|
|
// if k > km {
|
|
// // key is greater than the key at mid, so move right.
|
|
// lo = mid + 1
|
|
// } else {
|
|
// // else move left.
|
|
// hi = mid
|
|
// }
|
|
// }
|
|
// for i := lo; i <= hi; i++ {
|
|
// if ki := n.key(i); ki >= k {
|
|
// return i
|
|
// }
|
|
// }
|
|
// return N
|
|
}
|
|
func (n node) maxKey() uint64 {
|
|
idx := n.numKeys()
|
|
// idx points to the first key which is zero.
|
|
if idx > 0 {
|
|
idx--
|
|
}
|
|
return n.key(idx)
|
|
}
|
|
|
|
// compacts the node i.e., remove all the kvs with value < lo. It returns the remaining number of
|
|
// keys.
|
|
func (n node) compact(lo uint64) int {
|
|
N := n.numKeys()
|
|
mk := n.maxKey()
|
|
var left, right int
|
|
for right = 0; right < N; right++ {
|
|
if n.val(right) < lo && n.key(right) < mk {
|
|
// Skip over this key. Don't copy it.
|
|
continue
|
|
}
|
|
// Valid data. Copy it from right to left. Advance left.
|
|
if left != right {
|
|
copy(n.data(left), n.data(right))
|
|
}
|
|
left++
|
|
}
|
|
// zero out rest of the kv pairs.
|
|
zeroOut(n[keyOffset(left):keyOffset(right)])
|
|
n.setNumKeys(left)
|
|
|
|
// If the only key we have is the max key, and its value is less than lo, then we can indicate
|
|
// to the caller by returning a zero that it's OK to drop the node.
|
|
if left == 1 && n.key(0) == mk && n.val(0) < lo {
|
|
return 0
|
|
}
|
|
return left
|
|
}
|
|
|
|
func (n node) get(k uint64) uint64 {
|
|
idx := n.search(k)
|
|
// key is not found
|
|
if idx == n.numKeys() {
|
|
return 0
|
|
}
|
|
if ki := n.key(idx); ki == k {
|
|
return n.val(idx)
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// set returns true if it added a new key.
|
|
func (n node) set(k, v uint64) (numAdded int) {
|
|
idx := n.search(k)
|
|
ki := n.key(idx)
|
|
if n.numKeys() == maxKeys {
|
|
// This happens during split of non-root node, when we are updating the child pointer of
|
|
// right node. Hence, the key should already exist.
|
|
assert(ki == k)
|
|
}
|
|
if ki > k {
|
|
// Found the first entry which is greater than k. So, we need to fit k
|
|
// just before it. For that, we should move the rest of the data in the
|
|
// node to the right to make space for k.
|
|
n.moveRight(idx)
|
|
}
|
|
// If the k does not exist already, increment the number of keys.
|
|
if ki != k {
|
|
n.setNumKeys(n.numKeys() + 1)
|
|
numAdded = 1
|
|
}
|
|
if ki == 0 || ki >= k {
|
|
n.setAt(keyOffset(idx), k)
|
|
n.setAt(valOffset(idx), v)
|
|
return
|
|
}
|
|
panic("shouldn't reach here")
|
|
}
|
|
|
|
func (n node) iterate(fn func(node, int)) {
|
|
for i := 0; i < maxKeys; i++ {
|
|
if k := n.key(i); k > 0 {
|
|
fn(n, i)
|
|
} else {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
func (n node) print(parentID uint64) {
|
|
var keys []string
|
|
n.iterate(func(n node, i int) {
|
|
keys = append(keys, fmt.Sprintf("%d", n.key(i)))
|
|
})
|
|
if len(keys) > 8 {
|
|
copy(keys[4:], keys[len(keys)-4:])
|
|
keys[3] = "..."
|
|
keys = keys[:8]
|
|
}
|
|
fmt.Printf("%d Child of: %d num keys: %d keys: %s\n",
|
|
n.pageID(), parentID, n.numKeys(), strings.Join(keys, " "))
|
|
}
|