// Package xxhash implements the 64-bit variant of xxHash (XXH64) as described // at http://cyan4973.github.io/xxHash/. package xxhash import ( "encoding/binary" "hash" ) const ( prime1 uint64 = 11400714785074694791 prime2 uint64 = 14029467366897019727 prime3 uint64 = 1609587929392839161 prime4 uint64 = 9650029242287828579 prime5 uint64 = 2870177450012600261 ) // NOTE(caleb): I'm using both consts and vars of the primes. Using consts where // possible in the Go code is worth a small (but measurable) performance boost // by avoiding some MOVQs. Vars are needed for the asm and also are useful for // convenience in the Go code in a few places where we need to intentionally // avoid constant arithmetic (e.g., v1 := prime1 + prime2 fails because the // result overflows a uint64). var ( prime1v = prime1 prime2v = prime2 prime3v = prime3 prime4v = prime4 prime5v = prime5 ) type xxh struct { v1 uint64 v2 uint64 v3 uint64 v4 uint64 total int mem [32]byte n int // how much of mem is used } // New creates a new hash.Hash64 that implements the 64-bit xxHash algorithm. func New() hash.Hash64 { var x xxh x.Reset() return &x } func (x *xxh) Reset() { x.n = 0 x.total = 0 x.v1 = prime1v + prime2 x.v2 = prime2 x.v3 = 0 x.v4 = -prime1v } func (x *xxh) Size() int { return 8 } func (x *xxh) BlockSize() int { return 32 } // Write adds more data to x. It always returns len(b), nil. func (x *xxh) Write(b []byte) (n int, err error) { n = len(b) x.total += len(b) if x.n+len(b) < 32 { // This new data doesn't even fill the current block. copy(x.mem[x.n:], b) x.n += len(b) return } if x.n > 0 { // Finish off the partial block. copy(x.mem[x.n:], b) x.v1 = round(x.v1, u64(x.mem[0:8])) x.v2 = round(x.v2, u64(x.mem[8:16])) x.v3 = round(x.v3, u64(x.mem[16:24])) x.v4 = round(x.v4, u64(x.mem[24:32])) b = b[32-x.n:] x.n = 0 } if len(b) >= 32 { // One or more full blocks left. b = writeBlocks(x, b) } // Store any remaining partial block. copy(x.mem[:], b) x.n = len(b) return } func (x *xxh) Sum(b []byte) []byte { s := x.Sum64() return append( b, byte(s>>56), byte(s>>48), byte(s>>40), byte(s>>32), byte(s>>24), byte(s>>16), byte(s>>8), byte(s), ) } func (x *xxh) Sum64() uint64 { var h uint64 if x.total >= 32 { v1, v2, v3, v4 := x.v1, x.v2, x.v3, x.v4 h = rol1(v1) + rol7(v2) + rol12(v3) + rol18(v4) h = mergeRound(h, v1) h = mergeRound(h, v2) h = mergeRound(h, v3) h = mergeRound(h, v4) } else { h = x.v3 + prime5 } h += uint64(x.total) i, end := 0, x.n for ; i+8 <= end; i += 8 { k1 := round(0, u64(x.mem[i:i+8])) h ^= k1 h = rol27(h)*prime1 + prime4 } if i+4 <= end { h ^= uint64(u32(x.mem[i:i+4])) * prime1 h = rol23(h)*prime2 + prime3 i += 4 } for i < end { h ^= uint64(x.mem[i]) * prime5 h = rol11(h) * prime1 i++ } h ^= h >> 33 h *= prime2 h ^= h >> 29 h *= prime3 h ^= h >> 32 return h } func u64(b []byte) uint64 { return binary.LittleEndian.Uint64(b) } func u32(b []byte) uint32 { return binary.LittleEndian.Uint32(b) } func round(acc, input uint64) uint64 { acc += input * prime2 acc = rol31(acc) acc *= prime1 return acc } func mergeRound(acc, val uint64) uint64 { val = round(0, val) acc ^= val acc = acc*prime1 + prime4 return acc }